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Interpreting entropy as a prior probability suggests a universal but "purely 
empirical" measure of "goodness of fit." This allows statistical techniques to be 
used in situations where the correct theory--and not just its parameters--is still 
unknown. As developed illustratively for least-squares nonlinear regression, the 
measure proves to be a transformation of the R 2 statistic. Unlike the latter, 
however, it diminishes rapidly as the number of fitting parameters increases. 

1. I N T R O D U C T I O N  

Statist ics,  as c o m m o n l y  prac t iced ,  suffers f rom wel l -known concep tua l  
diff icult ies .  The  t ex tbook  p rocedure  is to assume prov i s iona l ly  a " n u l l  
hypothes i s , "  H 0' and  then reject  it if it  leads  to too smal l  a p r o b a b i l i t y  for 
the ac tual  ou t come  or  " d a t a , "  D. But D, be ing  on ly  one of very m a n y  
poss ib le  outcomes ,  is never  very likely. To make  up for  this one lumps  D 
with o ther  unl ike ly  outcomes ,  bu t  the m a n n e r  of  l u m p i n g - - e q u i v a l e n t l y  the 
choice of s t a t i s t i c - - i s  subject  to w h i m ]  Besides, it does  not  real ly  make  
sense to reject  H 0 unless some o ther  t enable  hypothes i s  H~ expla ins  D 
bet ter .  3 The  Bayes ian  me thod  overcomes  these p rob lems ,  bu t  in t roduces  a 
new source of  subject iv i ty  with the need to assign " p r i o r  p robab i l i t i e s . "  The  

LSupported in part by the NSF under Grant No. PHY78-24275. 
2One could remove this ambiguity by finding and using a "universal statistic". This seems to 
be the proposal of Kullback (1959) with the statistic being the (log of the) "likelihood ratio." 

3Of course this sketch is a caricature, but the dangers referred to are ones which thoughtful 
statisticians have been able more to warn against than to eliminate systematically. (Kruskal 
and Tanur, 1978). 
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lack of a systematic way to do this becomes especially disturbing when one 
is dealing with an infinite-dimensional parameter space (function space). 

Probably none of these' difficulties is too serious when it is a question 
of estimating a parameter in a theory of known form, and certainly they are 
all unimportant in the large N limit, where normality always prevails and all 
applicable prescriptions agree. But what about purely "phenomenological" 
applications where there are relatively few observations and even the 
functional form of the true distribution is unknown? In this type of situation 
one might doubt whether statistics makes sense at all, but unfortunately 
such a "phenomenological fit" to the data is often all that one really has, 
especially in fields such as sociology and economics where usually one 
knows neither the form of the underlying functional relation (if any) nor the 
distribution of the random deviations from that relation (the "errors"). (See, 
e.g., Hanushek and Jackson, 1977.) In the physical sciences one usually does 
know the theory in advance, but even here "phenomenological" questions 
of the sort "Are galaxies randomly distributed in the sky?" can arise. And 
then how is one to decide whether a seeming regularity--say, a clumping or 
a presence of filaments--is really present? 

As I just said, "Bayesian statistics" allows one to pose such questions, 
but it can answer them objectively only to the extent that the notions of a 
" theory" and of its "prior probability" can be freed of the subjective 
interpretation they usually carry. This paper will attempt such a liberation 
in two steps. First we will reinterpret "probability of the theory, T "  to 
mean "probability that the state of the universe is such that T holds"; and 
then we will try to use the formulas S = k l g N  and S / k  = -  1 (1 being 
information) to estimate this probability. In other words we take seriously 
the fact that even such things as societies or economies are ultimately 
physical systems and therefore try to apply universally the basic formulas of 
statistical mechanics and information theory. 

To see what this might mean in practice we will focus on the particular 
problem of (nonlinear) regression or "curve fitting" and will derive a 
quantitative criterion of "goodness of fit" which will be given explicitly for 
the class of least-squares fits. 

2. ENTROPY AND PRIOR PROBABILITIES 

In "curve fitting" one is seeking the functional dependence--if  a n y - - o f  
some variable y on a second variable x. Usually one writes the presumed 
dependence in the form 

y = f ( x ) + u  (1) 
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where u is the "error," but for simplicity and generality we can deal directly 
with the collection of probabilities P (y ;  x). 

Definition. The data D are the collection of "observed" pairs. 

(For example, we might be seeking the dependence of height on age. Then x i 
could be the age in months of the ith individual and Yi his or her height to 
the nearest centimeter.) We will also assume that the observations are 
independent, and can then state the following: 

Definition. A (phenomenological) theory T is an assignment to each 
possible pair ( y , x )  of a number P(y; x) representing the hypothetical 
probability of y given x. 

Here x, the variable regarded as "independent ,"  must range over some 
finite set, and for each of its values, y must range over some finite set 
appropriate to x. 

Now let - I ( T )  be the log of the (unnormalized) "pr ior  probability" of 
theory T, and let - I (DIT)  be the log probability of D according to T (cf. 
Penrose, 1970): 

N 

1 ( B I T )  = E l g P ( y i ; x i )  -I  (2)  
i=l 

Then the probability that both T is true and D occurs is p ( T )  = e -~<~ 
where 

X(D, T) = ~(DIT)+ I(T) (3) 

As is well known this p results as the "posterior  probability" of T when the 
standard rules of probability are applied, and then the theory which 
maximized p ( T )  would be the "best  bet." 

But why should the rules of probability apply to theories? Well the Yi 
and the x i must be observables of some physical system (a person, a 
collection of galaxies, an economy, etc.) and it is not necessarily unwar- 
ranted to ask for the probability for a general system in a given class to 
possess (commuting) observables y, x and to be in a state such that the 
P(y; x) have the values specified by a given theory T. 

Having made this leap let us continue a bit further. What we have 
called the "system" is really just a state of a more general system. (For 
example, an economy is a collection of atoms in a particular quantum 
state. 4) Treating the system as a "black box" characterized by the probabili- 

4It is not clear, however, that the notion of observable can be assimilated to that of state this 

way. 
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ties P(y; x), we can ask what is the number  (suitably defined) of  states 
which yield a given set of  P 's, that is to say, a given T. If  N is the number  of  
states in this col lec t ion-- le t  us call it the collection of  "real izat ions"  of  
T - - t h e n  log N = S ( T ) / k  = - I ( T )  is the corresponding entropy. 

Conversely by estimating S we would discover the needed "p r i o r "  
probabilit ies e s. Equivalently we could estimate the information needed to 
build (at least) one of the possible realizations, R, of  T from the given 
constituents. If  I ( R )  is the informat ion needed for a part icular  realization 
(equal by definit ion to the min imum entropy created in actually building R ), 
then as in thermodynamics ,  max R( - I (  R )) is often a reliable estimate of 

- I (T) .  Our  rule then will be to estimate I ( T )  from the simplest concrete 
realization of  T. 

This is still quite vague in practice, but  we can make it much more 
definite by restricting ourselves to simple realizations of  a special sort, 
namely, to Turing machines which can compute  the function (y,x)---> 
P(y; x). 5 (It  is clear that an actual system realizing T could be constructed 
from such a Turing machine with little extra effort. 6) 

Of course with sufficient general knowledge about  the type of  system 
under  considerat ion one could conceivably show in a particular case that 
such Turing machine estimates of  I (T )  were inappropriate.  But such 
knowledge would be precisely the theory which, by definition, is lacking in 
"phenomenolog ica l "  applications. When  a theory is not  lacking, one should 
look directly thereto for the prior  probabil i ty of  T. Also notice that many  
general systems could actually be set up to mimic Turfing machines, and the 
idea that a computat ionl ike  process exists as a quotient of the system is not  
nearly as bizarre as the idea that it exists within it as a subsystem. 

We have now arrived at a prescription which (al though it is still not 
fully defined) might have more immediate  plausibility for some people than 
the chain of  steps leading to it. Let us formulate  it directly. 

Criterion. That  theory T best fits given data  D which minimizes 
I(D, T ) =  I (DIT)+ I(T) ,  where I (T )  is the complexity ( information con- 
tent) of  the simplest 7 Turing machine which can compute  the probabilit ies 
P(y; x) defining T. 

5By assuming such a machine exists we are of course restricting the possible theories, but only 
in a way harmless on the phenomenological level. 

6In this connection note that quantum systems can furnish truly random numbers. 
7This will always be well defined (relative to a definition of Turing machine complexity) 
because the number of machines with complexity less than a given value is finite. In fact, one 
can go further and ask whether the prior probability e-tlr~ is normalizable over the class of 
all Turing machines. If it is, or at least if e -tc~ is normalizable for fixed D, then our earlier 
interpretation, following equation (3), of p(T ) as a "posterior probability" takes on a precise 
meaning. In connection with our criterion notice also that when D is data for a large number 



A Quantitative Occam's Razor 1095 

Thus stated, the criterion appears as a kind of  Occam's  razor, balancing 
naive  goodness of  fit [as measured by the log likelihood, - I ( D I T ) ]  against 
complexity of  the theory achieving the fit [as measured by I (T) ] .  

Unfor tuna te ly  the correct definit ion of Tur ing machine complexity for 
our  purposes is far f rom evident despite the efforts of  m a n y  workers (Fine, 
1973; Yasuhara,  1971). Nevertheless we will see in the next section that 
a t tent ion to parameter-s torage requirements can enable one to say some- 
thing about  I ( T )  even in the absence of  a general theory of  Turing machine 
complexity.  

A development  strictly analogous to that which follows would thus go 
through for any theory whose informat ion content  can be estimated in terms 
of  its need for parameter  storage. In part icular  the treatable theories are in 
no way restricted to those hypothesizing normal  e r ro r s )  However,  for 
analytical convenience in estimating I ( D ,  T )  we will henceforth restrict 
ourselves to this class of theories, i.e., to fits of  the least-squares type. 

3. A P P L I C A T I O N  T O  ( N O N L I N E A R )  L E A S T - S Q U A R E S  
R E G R E S S I O N  

Although an information-theoret ical  viewpoint really presupposes 
bounded  discrete data (otherwise 1 = oo) it will be harmless, and analytically 
convenient,  to treat y as cont inuous and ranging f rom - o o  to oo. The 
character  of  x will not  matter, but  for definiteness we can imagine it as a 
column vector with rational entries. Also, we will define for any class of  
theories, C, 

I ( D [ C ] )  = m i n  ( I ( D I T ) +  I ( T ) )  
T ~ C  

as the value of I ( D ,  T )  attained by that theory of type C which affords the 
best "phenomenolog ica l  fit" to D. 

3.1. The Class of Theories C o . Consider  first the class C O of theories 
asserting that y does not depend on x at all but  is normal ly  distributed with 

N of actually independent repetitions of the same experiment, then as N --* oo the T which 
predicts the true probabilities will eventually do better than every other. More precisely let 
D = ( D I , D 2 .. . . .  D N ), let the true probability of D be l-lp ( D i), and consider only theories T of 
the form P(D)= l-liU=lq(Di). For large N the (essentially) constant term I(T) becomes 
negligible in comparison to I(DIT). Hence the maximum likelihood estimate for q becomes 
best, and this is known to approach the true probability function, p. 

Sin fact, our formal criterion is not really restricted to curve fitting at all nor to the assumption 
of repeated independent observations. As long as T is an assignment Y.--, P(Y) [or Y---, 
P(Y; X)] of probabilities to overall outcomes, a calculation analogous to that given below 
could be performed. 
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mean/~, and standard deviation o, i.e., which postulate 

P( y; x ) =  (2~roZ )-  '/2exp[ - ( y - ~ )2/20z ] (4) 

for some ~t and a. Actually (4) cannot be a perfect equality. Rather, since we 
are identifying theories with (equivalence classes of) Turing machines and 
no Turing machine calculates with infinite precision, the theories of type C O 
are really those which approximate a normal distribution to some degree of 
accuracy. Let us estimate I(D[Co]) for this class. 

Taken literally the distribution (4) leads to an I(DIT ) of the form 

N 2 N 
I ( D l o , / ~ ) = - ~ - l g (  2~ra )+  E ( y _ / ~ ) 2  

i=1 202 
(5) 

N being the number of data points, or "observations." For given D this is a 
minimum when 

~t = i~o = y= N-  IE y i 

and 

o=o0= (y2-y2)'J2 

Expanding (5) to second order about these values yields 

Nlg(27reo~)+N(A~ 
I( DI~176 + A~176 + A~ ) = - 2  -~o a----o] (6) 

(where e = 2.71828...), which shows how imprecision in a and # affects the 
information content of D with respect to T. 

Now let TM be a Turing machine whose corresponding theory T 
[ = the set of values (P,  y, x) computed by TM] is in the class C 0. We can 
imagine TM as a computer with program and hardware and regard the 
length of the program residing in core as an estimate of (more properly a 
lower bound for) the information content of TM. (See Fine, 1973.) Then the 
length of the shortest program for T will be an estimate of I(T). Since 
P(y; x) depends on the parameters o, #, our machine TM must in effect 
have access to them, and the simplest way to achieve this will probably 
(except for very special values such as # = 0) be just to store o and/~ directly 
as part of the program itself. This need to store its parameters implies a 
lower bound for the information content of TM, and therefore for I(T). In 
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the sequel we will simply replace I (T )  by this lower bound, thereby 
acquiring an approximation which neglects the information corresponding, 
in our computer image, to the hardware and to the part of the program 
carrying out the actual computation. 

The storage required to hold o and/~ to precisions 80, 8/,L is approxi- 
mately 

lg + lg 8 o - '  = i ( 8 o ,  (7) 

(For convenience we evade here and below the question--related to the 
actual discreteness and boundedness of y - - o f  the units in which y, a, and 
are stored.) If, further, we approximate in (6) Art 2 by its mean, 8/~2/12, with 
respect to a uniform distribution in the interval [ - 8 t t / 2 ,  Slt/2], do the 
same for Ao z, and add the result to (7), we find for I ( D I T ) + I ( T )  the 
approximation 9 

N z N [ 8 ~  2 N [SI.L] 2 
-2 - lg(21re~176 12~ o o --lgSo+-~-~k--~--o] --lgS/t (8) 

Minimizing this with respect to 8~ and 6o furnishes finally the approxima- 
tion for I(D[Co]): 

I ( D [  Col ) = f f -~ lg(2qreoo  2 ) + l g N  + 1.70 

og= y2 _ y2 

(9a) 

(9b) 

which corresponds to storing a and ~ with precisions 

80 = (6/N)l/ZOo, 8Ix = (12/N)'/ZOo 

It seems remarkable that these values of 8a and 8/,L, which here represent the 
optimal precision for storing o and ~, equal the fluctuations one would 
expect to see (for large N) in the sample mean and variance! 

3.2. The Class C t. Let us generalize to theories which continue to 
assume independent normal errors but which allow for a functional depen- 
dence o fy  on x. In particular consider the class Cj of theories corresponding 

9In line with the neglect of the part of the program concerned with actual computation as 
opposed to parameter storage, we neglect also the increase in I(DIT) due to computational 
round-off error. 
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to a least-squares fit of the data to a fixed set of functional forms 

y=f(x;O~) (10) 

where 0 o, 0 t . . . . .  O r are parameters on which f depends. [For example, f (x ;  0) 
might be a polynomial in the components of x and the 0~ its coefficients.] In 
other words, a particular T ~ C~ says (to some approximation) that 

p( y; x ) = (2rro2)-'/2exp( - [Y - f(--- x; O ) ]2 } 2 o  2 (11) 

Notice that T involves a total of K + 2 
parameters 0.. 

As before we have 

parameters: o and the K + 1 

I(D, T) =  (DIo* + Ao, 0* + a0.)+  (8o, 80.) (12) 

where o* and 0* are the optimum values of o and 0~ (the values we attempt 
to store) and Ao and A0. are the deviations therefrom when o and 0. are 
stored with precisions 80 and 80.. 

Without having the exact functional form o f f  one cannot find I(D[C~ ]) 
precisely. Nonetheless one can without specializing f still estimate very 
crudely the minimum of (12) with respect to o*, 8", 80, and 80. This is done 
in the Appendix. To express the result most conveniently, let us define 

D 

V=yZ _y2 

= sample variance of y (13) 

and denote b y ' s  2' the minimum mean-square residual, corresponding to 
the choice 0 = 0". Then the minimum of (12) occurs for 

o* = [ ( N - 2 ) / ( N -  K-2)] t / l s  (14) 

and has the value 

I( D[ C,]) = N -  2K - 2 ,1g N_2~reNs2K - 2  + --2K lg(2 ere V) 

+ ~ l g  + l g N + l . 7  (15) 

Notice incidentally that o* has been automatically revised upward from s by 
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an amount  which, for large K and N, reproduces perfectly the usual 
adjustment for " K  degrees of freedom"! 

3.3. Comparing Different Functional Forms. Given any pair of theo- 
ries, T'  and T", the difference 

/4(r", r') = I(D, r ' ) -  z(D, r") (16) 

estimates the log of the ratio of the posterior probabilities of T" and T', and 
can be said to measure how much more " informat ive"  theory T" is than T'  
with respect to the data D. Within the class of "least-squares fits," i.e., of 
theories of some class C~, it is convenient to refer everything to the simple 
class C O and define 

H( C t ) = I(  D[Co] ) -  I(  D[CI] ) (17) 

or, equivalently, H(CI) = H(T~I, To*), where T~' and TO* are the best theories 
in their respective classes. To evaluate H we need only observe that with the 
present notation (suited to C I) the parameter  Oo 2 in equations (9) should be 
called V. With this substitution the difference of (9a) and (15) becomes 

H =  N -  K - 2  V / ( N - 2 )  K N~222 
2 l g s E / ( N -  K - 2 )  2 lg (18) 

Before discussing this expression let us recall that it can be a good 
approximation to H only when we can ignore the terms in I (T )  which we 
identified with the computer  hardware and with the parts of the programs 
concerned with actually performing calculations. If  we imagine that both 
programs use the same machine then the hardware term drops out of the 
difference, H. But the terms due to the programs cannot really be ignored; 
in fact they are needed in general to disfavor extremely elaborate forms f o r f  
in (10). In practice, however, f is usually very s imple - - in  fact it is often 
linear ~~ - - s o  that our approximation may not be too bad. Nevertheless (18) 
does unfairly favor CI over C O to some extent. 

1~ linear f [f(x)= Eb~,xr It] the very crude estimates of the Appendix can be improved 
because I( DIo, 0 ) = I( DI o, tt, b,,) is then a calculable explicit function of its arguments. With 
respect to a particular strategy for storing the parameters, 1(8o, 80) can also be found 
explicitly and the effect of the boundedness and discreteness ofy can be taken into account. 
For a seemingly reasonable choice of storage-strategy such an analysis leads to an H 
differing from (18) by an expression A K where A depends on the particular data D and is of 
order unity unless the matrix x'~xP-.-~x ~ is badly ill conditioned or R E is very small (very 
poor fit). 



1 tO0 Sorkin 

Writ ten in terms of the s tandard definition, R 2 =  1 - s Z / V ,  equation 
(18) reads 

H = N - K - 2 1 g ( N - K - 2 ) / ( N - 2  ) K N - 2  
2 1 - R 2 2 lg ~ (19) 

That  R 2 has an information-theoret ic  meaning has long been recognized 
([Kullback, 1959], Chap. I0, Sections 3 and 4). In fact f rom (5), (11), and 
the definition (2), it follows immediately that 

m i n i ( D i o ,  it) = N -~- lg (2~eV)  
a ,p .  

N lg(2~es 2 ) min Z( DIo, O ) = -~ 
o,0 

Hence 

N V N _, 
m i n I ( D I o , / ~ ) -  ~o'~I(D]o, O) = -~ lg--s~ = - -  lg(1 - R 2 ) 
O , #  , 2 

(20) 

to which we would have been led in place of  H had we set out  to minimize 
I (DIT  ) alone, rather than its sum with I (T) .  11 

For  purely phenomenological  purposes,  however, a theory with only 
two parameters  is not  equivalent to one with many 'pa ramete r s ,  even if the 
latter reduces to the former  for certain values of  the extra parameters.  Other  
things being equal the former, simpler theory is preferable, and (19) takes 
account  of this by  diminishing (20) in a manner  that grows more and more  
severe as K approaches N. In part icular  a fit with more  parameters  than 
data  points is automatical ly excluded because of  the factors ( N -  K - 2 )  in 
(19). 

4. D I S C U S S I O N  

Taken together with (2) and (3), any workable  definit ion of  I (T )  
provides a completely general measure, H, in terms of  which one can 

i J Notice that (20) is just the log of the maximum-likelihood ratio for Ci versus Co. It follows 
immediately from this that as N ~ ov with K, V, s 2 fixed, the leading terms of (18) coincide 
with the expression, lg(max, likelihood ratio)-K/21g N, derived in [Schwarz (1978)] as the 
prior-independent, asymptotic form of a Bayesian posterior. To discover the basis for this 
agreement one might begin by asking what must be added to the assumptions of [Schwarz 
(1978)] to obtain the particular finite-sample expression, H. 
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compare  any two phenomenological theories intended to describe given 
data D. 

A phenomenological theory in the sense of this paper  admits realization 
by Turing machines and, insofar as one can ignore ambiguity arising from 
the possibility of different representations of input (x, y )  and output 
P(y; x), a given T is realized by a unique class of machines. With respect to 
such a reahza t ion- -and  with respect to a definition of the information 
content of a Turing mach ine - - the  evaluation of I(T) becomes in effect a 
problem in recursive function theory. 

The work of the last section attempts to approach the least-squares 
method of curve fitting from this standpoint by regarding such a fit as a 
phenomenological theory characterized by the parameters o, 0~, 80, 80~ of 
equations (10)-(12). In this important  special case, equation (19) should be 
a reasonable first approximation to H, at least insofar as most of I ( T )  can 
be regarded as subsisting in the parameters  0 rather than in the capacity t2 to 
compute f .  The difference in H between, for example, a logarithmic and a 
quadratic fit would then express in absolute units the difference in the 
amount  of information "extracted" from the data by the one fit compared 
to the other. In particular H itself compares a given fit to one denying any 
functional dependence o f y  on x. 

When (19) is large for a particular functional form C I, we would like to 
say that the observed variation of y with x is "meaningful ."  But how do we 
know that some other, non-C~ theory based on a completely different 
functional relation between y and x (perhaps in conjunction with a highly 
non-normal and x-dependent distribution) might not offer a still smaller 
I(D, T) than the least-squares fit in question? From the point of view 
advocated here, the only fully satisfactory course would be to examine every 
Turing machine small enough to be relevant to the data and call significant 
only those features shared by all T which came sufficiently close to realizing 
the absolute minimum of I(D, T). Until we have a simple way to survey so 
many  possibilities, though, it looks like (19) could serve as a useful guide to 
whether an observed variation of y with x should be taken seriously. 

As a first step beyond this one could try to develop tests which, when 
applied to particular data D, would yield a lower bound to I(D[C]) for a 
reasonably large class C of choices of a functional form f(x; 0) and of a 

12One can probably estimate this extra complexity for simple functional forms (in particular 
for the linear form) and correct H accordingly. Alternately one could render it negligible by 
lumping together a sufficiently large number of phenomenological studies all of which used 
the same functional form forf. This would make sense only when all the studies really were 
in some way part of a larger social project, such as determining the toxicity of a large number 
of industrial chemicals. 



1102 Sorkin 

probability distribution for the error term, y - f ( x ;  0). Of course statisti- 
cians have already constructed many such alternative C's  (generalized 
least-squares, logistic...) and for each one it should be easy to obtain the 
estimate of I(D[C]) analogous to the estimates, (9) and (15). The more of 
these theories one tried with given data, the more confident one could feel 
with that particular one (or ones) which attained the least value of I ( D I T ) +  
I (T ) .  

APPENDIX: ESTIMATION OF I ( D I C  t ]) 

We will assume that the parameter 0 o is an overall constant,/~, in f and 
reserve the symbol " 0 "  for 0,, a > 1, so that f has the form 

f ( x ;  o) = t, + g(x;  o, . . .oK) (A1) 

For arbitrary o, /~, 0, I (DIo ,# ,O ) is from (11) and the definition (2) of 
I ( D I T )  

u 2 

N lg(2r + N - -  (A2) I (  D]o, l~, O ) = -~ 2~ z 

where 

u= y - t t -  g (x ;  O) (A3) 

and the overhead bar denotes the sample mean, as always. 
In terms of z : = y  - g(x; 0), (A2) takes the form 

N 2 2 
~- log(2rro )+  202 

For fixed 0, this is a function of o and/~; and we can approximate it by 
expanding about its minimum. As with equation (5) the minimum occurs for 

tt = Z, o = v 112 (A4) 

where 

19:= Z 2 _ ~ 2  

and the expansion analogous to (6) is 

N lg(27rev) + N A~ + N A/t2 1 ( D I o , ~ , O ) = - ~  ~ 20 (a5) 
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where Ao = o - v ~/2, A/~ =/x - ;?. If o and tt in (A4) are stored with preci- 
sions 8o and 8# then, as before, we can estimate Ao 2 and ~/~2 in (A5) by 
8o2/12 and 8/~2/12, respectively. Adding the result to 

yields 

I ( o , ~ , 0 )  = l g S o - ' + l g S ~ - ' +  I ( 0 )  

I ( D ,  T)  = 12v 
N lg(21rev) + N~~ - -  - lg 8o + NSl~z 24v lg6/~ + I(O) (A6) 

Here we have assumed that o and ~ are stored independently of each other 
and of 0 and have written " I ( 0 ) "  for the storage required by the 0~. 
Minimizing (A6) with respect to 81t and 8o gives 

I ( D , T ) = N - 2  . Nrre 2 
2 lg(2qrev)+lg 1--- ~ -  + I ( 0 )  (A7) 

with the minimum occurring at 8o = ( 6 v / N )  1/2, 8# = ( 1 2 v / N )  I/z, as in (9). 
We now imagine that each of the 0~ is stored with the same relative 

precision, e, i.e., that A0~ = rl~0~ with - e / 2  < 7/~ < e /2 .  (Allowing e to 
depend on a would not change anything.) Then 

I ( O )  = - K lg~ 

whose sum with (A7) is to be minimized. 
To do so we must know how v, the sample variance of y -  g(x; 0), 

depends on A0. In order to have a general expression for this let us expand v 
about the value 0 = 0* which minimizes it, and furthermore est imate--very 
roughly-- that  the deviations A0~ give rise to corresponding relative devia- 
tions of g(x; O) from g(x; 0"). In other words we assume that, owing to the 
imprecision in 0~, each g(x; O) suffers an error of about 

+_ ~/~V 1/2 (A8) 

(Here V I/z = y 2  )72 [defined in equation (13)] is being taken as a typical 
scale for y, such scales for the 0 's  (with respect to which it will be most 
efficient to store them) being derived from V and from typical scales for the 
components of x.) For each of the N data points (y,  x)  there are K such 
errors and assuming these N K  errors to combine roughly independently 
[and independently of y - g(x; 0")] we can expect 

v ~ s 2 + Ke2V/12 

where s z = vle=e, is the minimum of v. 

(A9) 
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Under these assumptions and estimates (A7) becomes 

Sorkin 

I ( D , T )  = - -  N - 2  lg[21re(s2 + KeZV/12)]_ K l g e + l g - -  
2 

Nrre 2 

(18) ' /2 

Minimizing this with respect to e (and neglecting a small negative term 
which never exceeds - 1) produces equat ion (15) of the text; and substitut- 
ing the minimizing value, e 2 = 1 2 s 2 / ( N -  K - 2 ) V ,  into (A9) yields (14). 

R e m a r k  1. It is possible to carry out  the minimizat ion leading to (9) 
and the analogous minimizat ion leading to (14) and (15) without  expanding 
in Ao; i.e., one minimizes ( I ( D I T ) )  + I ( T ) ,  where the brackets denote  exact 
expectat ions with respect to Ao and A/I in the ranges [ - 8 a / 2 ,  6o /2] ,  
[ -  6 ~ / 2 ,  6# /2 ] .  This alters (9), (14), and (15) slightly but  does not  affect H, 
which in this sense can therefore be regarded as exact, even for small N. 

R e m a r k  2. Strictly speaking it would be better to replace V by V -  s 2 
in (A8) since only this part  of  the variance of  y can be associated to 
variations in f .  This would increase H in (19) by K lg R-~.  
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